Assalamualaikum.
Halo apa kabar semuanya? pada postingan kali ini bertepatan dengan bulan Ramadhan 1438H selamat berpuasa semuanya!
Kali ini saya akan menjelaskan mengenai Parallel Computing yang tentunya akan dikupas secara tuntas. Pernahkah kalian mendengar istilah tersebut? apa sih itu? apa sejarahnya? bagaimana cara kerjanya? dan lain-lainya. untuk itu mari kita bahas satu per satu.
Apa itu Computing?
Computing atau Komputasi sebetulnya bisa diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Hal ini ialah apa yang disebut dengan teori komputasi, suatu sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Namun sekarang, kebanyakan komputasi telah dilakukan dengan menggunakan komputer.
Secara umum iIlmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu.
Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.
Kalo Pararel itu Sendiri Apa Sih?
Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya.
Jadi Pararrel Computing itu Apa?
Pararrel Computing atau Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak. Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi.
Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.
Komputasi paralel membutuhkan:
- Algoritma
- Bahasa Pemrograman, dan
- Compiler
Sebagai besar komputer hanya mempunyai satu CPU, namun ada yang mempunyai lebih dari satu. Bahkan juga ada komputer dengan ribuan CPU. Komputer dengan satu CPU dapat melakukan parallel processing dengan menghubungkannya dengan komputer lain pada jaringan. Namun, parallel processing ini memerlukan software canggih yang disebut distributed processing software.
Apa Tujuannya?
Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. Analogi yang paling gampang adalah, bila anda dapat merebus air sambil memotong-motong bawang saat anda akan memasak, waktu yang anda butuhkan akan lebih sedikit dibandingkan bila anda mengerjakan hal tersebut secara berurutan (serial). Atau waktu yg anda butuhkan memotong bawang akan lebih sedikit jika anda kerjakan berdua.
Performa dalam pemrograman paralel diukur dari berapa banyak peningkatan kecepatan (speed up) yang diperoleh dalam menggunakan tehnik paralel. Secara informal, bila anda memotong bawang sendirian membutuhkan waktu 1 jam dan dengan bantuan teman, berdua anda bisa melakukannya dalam 1/2 jam maka anda memperoleh peningkatan kecepatan sebanyak 2 kali.
Bagaimana Sejarahnya Terbentuknya?
Komputasi Paralel merupakan salah satu teknologi paling menarik sejak ditemukannya komputer pada tahun 1940-an. Terobosan dalam pemorosesan parallel selalu berkembang dan mendapatkan tempat disamping teknologi-teknologi lainnya sejak Era Kebangkitan (1950-an), Era Mainframe (1960-an), Era Minis (1970-an), Era PC (1980-an), dan Era Komputer Paralel (1990-an). Dengan berbagai pengaruh atas perkembangan teknologi lainnya, dan bagaimana teknologi ini mengubah persepsi terhadap komputer, dapat dimengerti betapa pentingnya komputasi parallel itu.
Inti dari komputasi parallel yaitu hardware, software, dan aplikasinya. Paralel prosesing merupakan suatu pemrosesan informasi yang lebih mendekatkan pada manipulasi rata-rata dari elemen data terhadap satu atau lebih penyelesaian proses dari sebuah masalah. Untuk melakukan perhitungan komputasi dengan menggunakan 2 atau lebih CPU/Processor dalam suatu komputer yang sama atau komputer yang berbeda dimana dalam hal ini setiap instruksi dibagi kedalam beberapa instruksi kemudian dikirim ke processor yang terlibat komputasi dan dilakukan secara bersamaan disebut dengan Parallel komputasi. Software yang betugas untuk pembagian proses komputasi digunakan Message Parsing Interface (MPI).
Bedanya Komputasi Paralel dengan Multitasking Apa?
Multitasking itu sendiri adalah komputer dengan processor tunggal yang dapat mengeksekusi beberapa tugas secara bersamaan. Sedangkan komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann. Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui 4 model komputasi atau arsitektur komputer pararel yang digunakan, yaitu:
Apa Aja Aristektur Komputer Parallel?
- Komputer SISD (Single Instruction stream-Single Data stream)
Pada komputer jenis ini semua instruksi dikerjakan terurut satu demi satu, tetapi juga dimungkinkan adanya overlapping dalam eksekusi setiap bagian instruksi (pipelining). Pada umumnya komputer SISD berupa komputer yang terdiri atas satu buah pemroses (single processor). Namun komputer SISD juga mungkin memiliki lebih dari satu unit fungsional (modul memori, unit pemroses, dan lain-lain), selama seluruh unit fungsional tersebut berada dalam kendali sebuah unit pengendali.
Oleh karena itu model ini dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.
- Komputer SIMD (Single Instruction stream-Multiple Data stream)
Pada komputer SIMD terdapat lebih dari satu elemen pemrosesan yang dikendalikan oleh sebuah unit pengendali yang sama. Seluruh elemen pemrosesan menerima dan menjalankan instruksi yang sama yang dikirimkan unit pengendali, namun melakukan operasi terhadap himpunan data yang berbeda yang berasal dari aliran data yang berbeda pula.
Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).
- Komputer MISD (Multiple Instruction stream-Single Data stream)
Komputer jenis ini memiliki n unit pemroses yang masing-masing menerima dan mengoperasikan instruksi yang berbeda terhadap aliran data yang sama, dikarenakan setiap unit pemroses memiliki unit pengendali yang berbeda. Keluaran dari satu pemroses menjadi masukan bagi pemroses berikutnya. Belum ada perwujudan nyata dari komputer jenis ini kecuali dalam bentuk prototipe untuk penelitian.
Sebagai contoh, dengan menggunakan kasus yang sama pada contoh model SIMD namun cara untuk menyelesaikannya yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.
- Komputer MIMD (Multiple Instruction stream-Multiple Data stream)
Pada sistem komputer MIMD murni terdapat interaksi di antara n pemroses. Hal ini disebabkan seluruh aliran dari dan ke memori berasal dari space data yang sama bagi semua pemroses. Komputer MIMD bersifat tightly coupled jika tingkat interaksi antara pemroses tinggi dan disebut loosely coupled jika tingkat interaksi antara pemroses rendah.
Pada Multiple Instruction, Multiple Data biasanya menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.
Apa Itu Message Passing Interface?
MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel. Proses yang dijalankan oleh sebuah aplikasi dapat dibagi untuk dikirimkan ke masing – masing compute node yang kemudian masing – masing compute node tersebut mengolah dan mengembalikan hasilnya ke komputer head node. Untuk merancang aplikasi paralel tentu membutuhkan banyak pertimbangan – pertimbangan diantaranya adalah latensi dari jaringan dan lama sebuah tugas dieksekusi oleh prosesor.
MPI ini merupakan standard yang dikembangkan untuk membuat aplikasi pengirim pesan secara portable. Sebuah komputasi paralel terdiri dari sejumlah proses, dimana masing-masing bekerja pada beberapa data lokal. Setiap proses mempunyai variabel lokal, dan tidak ada mekanisme suatu proses yang bisa mengakses secara langsung memori yang lain. Pembagian data antar proses dilakukan dengan message passing, yaitu dengan mengirim dan menerima pesan antar proses.
MPI menyediakan fungsi-fungsi untuk menukarkan antar pesan. Kegunaan MPI yang lain adalah
- Menulis kode paralel secara portable,
- Mendapatkan performa yang tinggi dalam pemrograman paralel, dan
- Menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak begitu cocok dengan model data paralel.
Sedangkan Parallel Virtual Machine?
Adalah paket software yang mendukung pengiriman pesan untuk komputasi parallel antar komputer. PVM dapat berjalan diberbagai macam variasi UNIX atau pun windows dan telah portable untuk banyak arsitektur seperti PC, workstation, multiprocessor dan superkomputer.
Sistem PVM terbagi menjadi dua. Pertama adalah daemon, pvmd, yang berjalan pada mesin virtual masing-masing komputer. Mesin virtual akan dibuat, ketika User mengeksekusi aplikasi PVM. PVM dapat dieksekusi melalui prompt UNIX disemua host. Bagian kedua adalah library interface rutin yang mempunyai banyak fungsi untuk komunikasi antar task . Library ini berisikan rutin yang dapat dipanggil untuk pengiriman pesan, membuat proses baru, koordinasi task dan konfigurasi mesin virtual.
Salah aturan main yang penting dalam PVM adalah adanya mekanisme program master dan slave/worker. Programmer harus membuat Kode master yang menjadi koordinator proses dan Kode slave yang menerima, menjalankan, dan mengembalikan hasil proses ke komputer master. Kode master dieksekusi paling awal dan kemudian melahirkan proses lain dari kode master. Masing-masing program ditulis menggunakan C atau Fortran dan dikompilasi dimasing-masing komputer. Jika arsitektur komputer untuk komputasi paralel semua sama, (misalnya pentium 4 semua), maka program cukup dikompilasi pada satu komputer saja. Selanjutnya hasil kompilasi didistribusikan kekomputer lain yang akan menjadi node komputasi parallel. Program master hanya berada pada satu node sedangkan program slave berada pada semua node.
Komunikasi dapat berlangsung bila masing-masing komputer mempunyai hak akses ke filesystem semua komputer. Akses kefile system dilakukan melalui protokol rsh yang berjalan di unix atau windows. Berikut adalah langkah pengaturan pada masing-masing komputer :
- Buat file hostfile yang berisi daftar node komputer dan nama user yang akan dipakai untuk komputasi parallel. Bila nama user pada semua komputer sama misalnya nama user riset pada komputer C1, C2,C3 dan C4, maka hostfile ini boleh tidak ada. Hostfile ini dapat digunakan bila nama user di masing-masing komputer berbeda.
- Daftarkan IP masing-masing komputer pada file /etc/hosts/hosts.allow dan /etc/hosts/hosts.equiv.
- Penambahan dan penghapusan host secara dinamis dapat dilakukan melalui konsole PVM. Bila IP tidak didefinisikan pada hostfile¸ cara ini dapat digunakan.
Program PVM terdiri dari master dan slave, dimana program master dieksekusi paling awal dan kemudian melahirkan proses lain. PVM memanggil rutin pvm_spawn() untuk melahirkan satu atau dua proses lebih yang sama. Fungsi-fungsi untuk PVM versi bahasa C mempunyai rutin awalan pvm. Pengiriman dan penerimaan task diidentifikasi dengan TID (Task Identifier). TID ini bersifat unik dan digenerate oleh pvmd lokal. PVM berisi beberapa rutine yang mengembalikan nilai TID sehingga aplikasi user dapat mengidentifikasi task lain disistem.
Secara umum, langkah implementasi komputasi parallel sebagai berikut :
- Jalankan PVM daemon pada setiap mesin dalam cluster
- Jalankan program master pada master daemon
- Master daemon akan menjalankan proses slave.
Bagaimana Perkembangan Komputasi Pararel di Indonesia?
Usaha untuk membangun infrastruktur mesin paralel sudah dimulai sejak era 90-an, meski belum pada tahap serius dan permanen. Namun untuk pemrograman paralel sudah sejak awal menjadi satu mata-kuliah wajib di banyak perguruan tinggi terkait. Baru pada tahun 2005 dimulai pembuatan infrastruktur mesin paralel permanen, misalnya yang dikembangkan oleh Grup Fisika Teoritik dan Komputasi di P2 Fisika LIPI.
Didorong oleh perkembangan pemrograman paralel yang lambat, terutama terkait dengan sumber daya manusia (SDM) yang menguasainya, mesin paralel LIPI ini kemudian dibuka untuk publik secara cuma-cuma dalam bentuk LIPI Public Cluster (LPC). Saat ini LPC telah dikembangkan lebih jauh menjadi gerbang komputasi GRID di Indonesia dengan kerjasama global menjadi IndoGRID.
Pada tahun berikutnya, dengan dukungan dana dari proyek Inherent Dikti, Fasilkom UI juga membangun mesin paralel. Sementara itu pada tahun 2009, ITB membuat kluster hibrid CPU dan GPU yang pertama di Indonesia dengan kemampuan hingga 60 inti CPU dan 1920 inti GPU.
Sekian penjelasan saya mengenai Parallel Computing, Terima kasih sudah membaca :)
Sumber & Referensi:
https://en.wikipedia.org/wiki/Parallel_computing
http://computer-science.infokelaskaryawan.com/en3/2587-2471/Komputasi-Paralel
https://staff.blog.ui.ac.id/herik/2008/07/02/pemrograman-paralel-dengan-parallel-virtual-machine
Google Image